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We report a measurement of the top quark mass using events collected by the CDF II Detector
from pp collisions at

√
s = 1.96 TeV at the Fermilab Tevatron. We calculate a likelihood function

for the top mass in events that are consistent with tt → b`−ν`b`
′+ν′` decays. The likelihood is

formed as the convolution of the leading-order matrix element and detector resolution functions.
The events used in this analysis are selected using an evolutionary neural network that is directly
optimized for precision in measurement of the top quark mass. The joint likelihood is the product
of likelihoods for each of 344 events collected in 2.0 fb−1 of integrated luminosity, yielding a top
quark mass, Mt = 171.2± 2.7(stat.)± 2.9(syst.) GeV/c2.

I. INTRODUCTION

Precision measurements of the top quark mass, Mt, place constraints on the masses of particles to which the
top quark contributes radiative corrections, including the unobserved Higgs boson and particles in extensions to the
standard model. At the Tevatron, top quarks are primarily produced in pairs. The dilepton channel, consisting of
the decays tt → b`−ν`b`

′+ν′`, has a small branching fraction but allows measurements which are less reliant on the
calibration of the jet energy scale, the dominant systematic uncertainty, than measurements in channels with hadronic
W decays. A discrepancy from other channels could indicate contributions from new processes.

The reconstruction of the top mass from dilepton events poses a particular challenge as the two neutrinos from
W decays are undetected. Previous measurements in this channel [1, 2] using Run I data have calculated the mass
by making several kinematic assumptions and integrating over the remaining unconstrained quantity. To extract
maximum information from the small sample of dilepton events, we adapt a technique pioneered for the analysis
of tt → b`ν`bqq

′ decays [3–5]. This technique uses the leading-order production cross-section and a parameterized
description of the jet energy resolution. Making minimal kinematic assumptions and integrating over six unconstrained
quantities, we obtain per-event likelihoods in top mass which can be directly multiplied to obtain the joint likelihood
from which Mt is determined.

This method was first applied to dilepton events at CDF [6–8] using a data set of 340 pb−1. An updated method
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was applied to a data set of 1.8 fb−1 [9], yielding the single most precise measurement of Mt in the dilepton channel.
These previous analyses utilized an event selection developed and optimized for measurement of the tt̄ production
cross section in the dilepton channel [10].

We present here a measurement performed using events selected with a neural network (NN) that is specifically
optimized via an evolutionary approach for maximizing the precision in top quark mass measurements.

II. EVENT SELECTION

This section describes the collected dataset, the trigger, the topological pre-selection which forms the basis of the
final optimized selection, and the optimization of the selection with neuroevolution.

A. Dataset and Trigger

This analysis is based on an integrated luminosity of 2.0 fb−1 collected with the CDF II detector between March
2002 and May 2007. The CDF II detector is a general purpose detector described elsewhere [12]. The data are
collected with an inclusive lepton trigger that requires events to have a lepton with ET > 18 GeV (for an electron) or
pT > 18 GeV/c (for a muon).

B. Pre-selection

We define a pre-selection which satisfies the basic topology of top dilepton decay and provides a starting point for
the optimization of selection used in the mass measurement. The pre-selection requires events with i) two opposite
sign leptons (electrons or muons) with pT > 20 GeV/c, ii) two or more jets with ET > 15 GeV within the region
|η| < 2.5, iii) missing transverse energy, 6ET > 20 GeV, and iv) the invariant mass of the two leptons, Mll > 10 GeV/c2.
We validate our pre-selection by comparing kinematic distributions for data events passing the pre-selection to those
from simulated events processes predicted to be in the pre-selected sample as shown in Figure 1.

C. Optimization with Neuroevolution

Finding the selection which produces the smallest expected statstical uncertainty for the top mass is a non-trivial
problem. The analysis technique itself has powerful mechanisms for suppressing certain backgrounds, which suggests
the measurement would be improved by loosening selection cuts to allow more signal as well as more well-suppressed
background. On the other hand, the likelihood calculations done in the analysis require several approximations which
require a correction; events which violate these assumptions may have a negative effect on the sensitivity.

Neural networks can describe an arbitrary function, so that the problem of finding the optimal selection function
can be recast as a search through the space of neural network weights and topologies for a network which gives the
optimal selection. In high-energy physics, neural networks are traditionally trained to separate signal and background
events in a way that minimizes the mis-classification of signal events as background and vice-versa. In this case, we
cannot use the traditional training technique, because we do not seek to classify individual events, but instead to
optimize the total analysis sensitivity, a property of an ensemble of events.

Instead, we use neuroevolution, an evolutionary approach to directly search for the optimal network. Beginning
with a population of random networks, analysis sensitivity is evaluated for each network. As seen in Figure 2, poor
performers are culled and strong performers are bred together and mutated in successive generations until performance
reaches a plateau. Because we have optimized directly on the analysis sensitivity, rather than some intermediate or
approximate figure of merit, the final network is precisely the one which gives the most sensitive measurement.
This approach has been shown to significantly outperform supervised methods in top quark event selection [13]. In
particular, we use NeuroEvolution of Augmenting Topologies (NEAT) [14], a neuroevolutionary method capable of
evolving a network’s topology in addition to its weights.

The neural network input variables are:

• Missing transverse energy

• Total vector energy

• Number of observed b-tags
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FIG. 1: Distribution of kinematic variables after preselection: number of jets, invariant mass of leptons,

missing transverse energy, number of secondary vertex tags, total vector ET in the event, and the output of the

NN used to optimize our selection.

FIG. 2: Neuro-evolution: evolutionary search for the optimal neural network event selection. Left, a

population of neural networks. Center, each network is evaluated in the context of the full analysis. Right, the

networks with the best performance are used to found the next population, and the poor performers are

discarded before the cycle repeats.

• Dilepton invariant mass

• Mininum azimuthal angle between a jet and the missing transverse energy

• Minimum azimuthal angle between a lepton and the missing transverse energy

We perform 20 generations of neuroevolution with this algorithm before choosing a neural network to select events
for our analysis. The predicted number of events for each expected source for a 2.0 fb−1 is shown in Table I for
both events with and without secondary vertex tags. Comparison of kinematic variables for data events passing the
final NN selection and for simulated events processes predicted to be in the sample is shown in Figure 3. Using the
NN optimized selection improves the a priori statistical uncertainty over the selection used in prior iterations of this
analysis by 20%.
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Ntags 0 ≥ 1
Z → ee 56.3± 13.7 2.3± 1.1
Z → µµ 48.6± 12.0 1.7± 0.8
Z → ττ 11.6± 4.0 0.1± 0.1
Z → ee + bb 1.8± 0.6 4.3± 2.2
Z → µµ + bb 1.5± 0.5 3.4± 1.8
Z → ττ + bb 0.2± 0.1 0.2± 0.1
Z → ee + cc 3.0± 0.9 1.2± 0.7
Z → µµ + cc 2.4± 0.7 1.0± 0.5
Z → ττ + cc 0.4± 0.2 0.0
WW 11.0± 5.5 0.4± 0.4
WZ 3.3± 1.7 0.2± 0.2
ZZ 2.3± 1.1 0.1± 0.1
Wγ 0.7± 0.2 0.0
fakes 29.0± 8.7 4.5± 1.1
tt 43.8± 4.4 78.0± 6.2

Total 215.8± 21.9 97.5± 7.2
Data (2.0 fb−1) 246 98

TABLE I: Summary of events in as a function of b-tags for NN selection.

Number of jets
0 1 2 3 4 5 6 7 8 9

Ev
en

ts

1

10

210

Data
Bkg. Uncert.

 ee!Z
µµ !Z
"" !Z

fakes
Diboson
tt

CDF RunII Preliminary (2.0/fb)

Number of jets
0 1 2 3 4 5 6 7 8 9

Ev
en

ts

1

10

210

]2Dilepton Mass [GeV/c
0 50 100 150 200 250 300 350

Ev
en

ts

1

10

210

Data
Bkg. Uncert.

 ee!Z
µµ !Z
"" !Z

fakes
Diboson
tt

CDF RunII Preliminary (2.0/fb)

]2Dilepton Mass [GeV/c
0 50 100 150 200 250 300 350

Ev
en

ts

1

10

210

]2  [GeV/cTMissing E
0 20 40 60 80 100 120 140

Ev
en

ts
1

10

210
Data
Bkg. Uncert.

 ee!Z
µµ !Z
"" !Z

fakes
Diboson
tt

CDF RunII Preliminary (2.0/fb)

]2  [GeV/cTMissing E
0 20 40 60 80 100 120 140

Ev
en

ts
1

10

210

Number of b-tags
-0.5 0 0.5 1 1.5 2 2.5 3 3.5

Ev
en

ts

1

10

210

Data
Bkg. Uncert.

 ee!Z
µµ !Z
"" !Z

fakes
Diboson
tt

CDF RunII Preliminary (2.0/fb)

Number of b-tags
-0.5 0 0.5 1 1.5 2 2.5 3 3.5

Ev
en

ts

1

10

210

]2 [GeV/cTTotal Vector E
0 100 200 300 400 500 600

Ev
en

ts

1

10

210 Data
Bkg. Uncert.

 ee!Z
µµ !Z
"" !Z

fakes
Diboson
tt

CDF RunII Preliminary (2.0/fb)

]2 [GeV/cTTotal Vector E
0 100 200 300 400 500 600

Ev
en

ts

1

10

210

FIG. 3: Distribution of kinematic variables after preselection: number of jets, invariant mass of leptons,

missing transverse energy, number of secondary vertex tags, and the total vector ET in the event.

III. METHOD

The information contained in an event regarding the top mass can be expressed as the conditional probability
P (x|Mt), where Mt is the top pole mass and x is a vector of measured event quantities. We calculate the posterior
probability using the theoretical description of the tt production process expressed with respect to the measured event
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quantities:

P (x|Mt) =
1

σ(Mt)
dσ(Mt)

dx

where dσ
dx is the per-event differential cross-section.

To evaluate the probability, we integrate over quantities which are unknown because they are unmeasured by the
detector, such as neutrino energies. Quark energies are not directly measured, but are estimated from the observed
energies of the corresponding jets. We parametrize this uncertainty using a transfer function between quark and jet
energies, W (p, j), giving us the probability of measuring jet energy j given parton energy p. We form the transfer
function by fitting a double Gaussian to a predicted distribution of parton-jet energy difference from simulated events.
The total expression for the probability of a given pole mass for a specific event can be written as

P (x|Mt) =
1
N

∫
dΦ8|Mtt(p;Mt)|2

∏
jets

W (p, j)fPDF (q1)fPDF (q2) (1)

where the integral is over the entire six-particle phase space, q is the vector of incoming parton-level quantities, p is the
vector of resulting parton-level quantities: lepton and quark momenta, and |Mtt(p;Mt)| is the tt production matrix
element as defined in [15, 16]. The constant term in front of the integral ensures that the normalization condition for
the probability: ∫

dx P (x|Mt) = 1

is satisfied.

A. Background

The probability P (x|Mt) is sufficient to extract the top quark mass in an unpolluted sample. However, the event
selection we utilize maximizes signal acceptance at the expense of a significant number of background events. To
reduce the effect of these events on the measurement, we must calculate the probabilities, Pbgi

(x) that they were
produced by a given background process; we form the generalized per-event probability as

Pn−tag(x|Mt) = Ps(x|Mt)pn−tag
s + Pbg1(x)pn−tag

bg1
+ Pbg2(x)pn−tag

bg2
+ · · · (2)

simply a sum of the probabilities for each process, weighted by their respective priors. Here, Ps(x|Mt) is as described
in equation 1 and the Pbgi

(x) are formed by calculating a differential cross-section for each event in a manner similar
to tt. The background processes for which we evaluate probabilities for in this manner are: Drell-Yan with associated
jets, W pair production with associated jets and W+3 jets production where one jet is incorrectly identified as a
lepton.

The weights for each term in Equation 2 depend on whether the event has a secondary vertex tag and are determined
from the expected fractions of signal and background events in each category, listed in Table I.

The final ensemble probability density is expressed as:

P (x|Mt) =
[ ∏

i0

P0−t(xi0 |Mt)
]
×

[ ∏
i1

P1−t(xi1 |Mt)
]
, (3)

where the products are over all untagged events, i0, and all tagged events, i1.

IV. CALIBRATION

To test the performance of the method, we construct Monte Carlo experiments using Monte Carlo for generated
top masses from 155 GeV/c2 to 195 GeV/c2. The number of signal and background events in each Monte Carlo
experiment are Poisson fluctuated values around the a priori estimates given in Table I; the estimate for tt at varying
masses is evolved to account for the variation of cross-section and acceptance. The response of the method for Monte
Carlo experiments with both signal and background is shown in Figure 4. A correction, as derived from this response,
is applied to the measured value in data.
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FIG. 4: Response for Monte Carlo experiments of signal and background events.
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FIG. 5: Residual, pull mean, and pull width for varying top mass Monte Carlo samples.

In the interest of computational tractability, several assumptions are made in the evaluation of the integrals in
Equation 1, such as the leading two jets in the event coming from b-quarks from top decay, and lepton momenta
and jet angles being measured perfectly. These assumptions are violated in small and understood ways in realistic
events. Due to these effects, the method underestimates the statistical error. The pull distribution in Monte Carlo
experiments is shown in Figure 5. To account for this underestimation, we scale the statistical error by a factor,
S = 1.16, derived from the results of our Monte Carlo experiments.

V. SYSTEMATIC UNCERTAINTIES

There are several sources of systematic error in our measurement which are summarized in Table II.
The single largest source of systematic error comes from the uncertainty in the jet energy scale, which we estimate by

varying the jet energy corrections by ±1σ and is 2.5 GeV/c2. A small uncertainty is assigned to possible imperfections
in the modeling of lepton energy in Monte Carlo events; this uncertainty is measured to be 0.1 GeV/c2. The uncertainty
in the Monte Carlo generator used to perform Monte Carlo experiments, estimated by measuring the difference in
extracted the top mass from Pythia events and Herwig events, amounts to 0.7 GeV/c2. The uncertainty in
the response correction shown in Figure 4 is estimated by varying that response by ±1σ and is 0.4 GeV/c2. The
uncertainty due to initial-state (ISR) and final-state (FSR) radiation is estimated by varying the amount of ISR and
FSR in simulated events and is measured to be 0.3 GeV/c2 for both cases.

The uncertainty in background composition is estimated by varying the background estimates from Table I within
their errors and amounts to 0.3 GeV/c2. In addition, a large uncertainty comes from the limited number of Monte
Carlo background events available for Monte Carlo experiments. To measure this uncertainty, we split each background
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Source Size (GeV/c2)

Jet Energy Scale 2.5
Lepton Energy Scale 0.1
Generator 0.7
Method 0.4
Sample composition uncertainty 0.3
Background statistics 0.5
Background modeling 0.2
FSR modeling 0.3
ISR modeling 0.3
PDFs 0.6
Total 2.9

TABLE II: Summary of systematic errors.

sample into twenty pairs of disjoint sets. We measure the mass for each of the disjoint sets and take the RMS of
the difference between them as an estimate of the error. Summing these, we get 0.5 GeV/c2. We also estimate an
uncertainty coming from possible imperfections in modeling the two largest sources of background: Drell-Yan and
events with a “fake” lepton. This uncertainty is estimated to be 0.2 GeV/c2

Finally, the uncertainties in the parton distribution functions (PDFs) are estimated by using different PDF sets
(CTEQ5L vs. MRST72), different values of ΛQCD, and varying the eigenvectors of the CTEQ6M set, yielding a total
uncertainty of 0.6 GeV/c2.

VI. RESULT IN DATA

We apply the procedure described in Section III to the 344 candidate events observed in the data. After applying
the corrections described in Section IV, we measure a top quark mass of

Mtop = 171.2± 2.7(stat.) GeV/c2

The final posterior probability density for the events in data can be seen in Figure 6.
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FIG. 6: Final posterior probability density as a function of the top pole mass for the 344 candidate events in data.

The measured statistical uncertainty is consistent with that measured for Monte Carlo experiments using Mtop =
172 GeV/c2 signal events as shown in Figure 7.
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VII. CONCLUSION

We measure the top quark mass to be

Mtop = 171.2± 2.7(stat.)± 2.9(syst.) GeV/c2

in dilepton events in 2.0 fb−1 of CDF II data. We have used a normalized per-event differential cross-section for leading
order top quark pair production and background to form a posterior probability. We utilize a neural network-based
selection optimized for precision in measurement of the top quark mass.
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